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An investigation is made of the deformation properties of clays in uniaxial and triaxial compression at 
constant moisture content. Rheological equations of  state for clay soils are proposed for the three-dimen- 
sional case. 

Deformation of clay soils under prolonged loading may be regarded as the sum of three deformations of different 
types - instantaneous elastic, elastic aftereffect, and viscous flow: 

~x = Sxi-t- ~xa+  ~xf, (x, to, z). (1) 

All three components retain their fundamental properties daring arbitrary deformation time and can be separated 
at any t ime by removing the load. The superposition principle is therefore valid for strains in clay soils, just as in cer- 
tain other media [1]. 

In these investigations we used several varieties of  marly fossiliferous and black Jurassic clays of semi-hard and 
hard consistency and a degree of  water saturation close to unity. All tests were performed under conditions of uniaxial 
and triaxial compression on cylindrical specimens with a diameter- to-height  ratio of 1: 2.5. The specimens were seal- 
ed to avoid the possibility of a change of moisture content due to drying out or draining. 

The volume change for clay soils under hydrostatic pressure is almost completely reversible, there being no ap- 
preciable creep strain (elastic aftereffect or viscous flow). When the specimens are subjected to a complete loading cy-  
cle under hydrostatic pressure, elastic hysteresis is invariable observed. The axial points of the hysteresis loop are lo- 
cated along a straight line (Fig. 1), i . e . ,  the volume change strains are proportional to the hydrostatic stresses: 

~m ---- ~m/K" (2) 

It follows from the tests on clay samples in hydrostatic compression that the volume change due to mean normal 
(hydrostatic) stress is associated only with the instantaneous elastic strain, whereas creep strains are caused only by 
stress deviator components and are not accompanied by volume change. This is confirmed by direct measurements of 
the transverse creep strain [2, 8] - in this case the values of Poisson's ratio are very close to the limiting value of 0.5. 
Since there are no volume creep strains, it is clear that the experimentally measured strains due to elastic aftereffect 
and viscous flow are equal to the corresponding components of the deviators for these strains. 

The tests show that the instantaneous elastic strains are uniquely determined by the applied stresses, and do not 
depend on their duration of action. The stress dependence of the instantaneous elastic strains may be obtained by pro- 
gressively loading the specimens, if, after applying each successive load step, the whole load is rapidly removed and 
the corresponding elastic recovery is determined. For the uniaxial stress state this nonlinear relation is well described by 
the function 

axi  m_ ox/F_, i ( ~x) = %/Eo ( 1 - -  b ex), 

and for triaxial stress, by the analogous function 

(Zx -- Zm) i -- ~x -- am__ ---- % -- ~ m 
2G i (o-j) 2Go (1 - -  a : j )  

(a) 

To calculate 8 m the specimen must first be subjected to hydrostatic compression. 

If values of the variable moduli E i (~j) --~ ~x/Sxiand G i (~j) ---- ( % -  e m ) / ( S x -  am) i and the constant modulus K 
are determined from the test data, then values Of Poisson's ratio for instantaneous elastic strains may also be found: 

~i ~- Ei  ( ' j) /2Gi ( ~ j ) - -  1, or ~i = 1/2 --Et(~j)/2K. 

It follows from the last formula that Poisson's ratio should be a linear function of the stress intensity: 

~ (~) = ~o (1 + k o~), 
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Fig. 1. Volume change under hy-  
drostatic compression for a sam- 

pie of Jurassic clay. 
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Fig. 2. Instantaneous e las t ic  strain 

of a sample of Jurassic clay: 1) in 

uniaxia l  compression; 2) as a func- 

t ion of o x - Om; 3) change in 
Poisson's ratio. 

where P0 = (K - F~)/2K and k = b F-0/(K - E0). At low stresses this ratio lies within the range of mean values 0 .25-  
0.30, and increases (Fig. 2) to 0 .35 -0 .40  at stresses close to failure. Determination of Poisson's ratio from measure-  
ments of  the instantaneous transverse strain leads to s imilar  remits. 

In the in i t ia l  stage direct ly  after loading or unloading the strains due to elast ic  aftereffect  are comparat ive ly  rap-  

id, but the strain rate is very quickly reduced as the strains as asymptot ica l ly  approach their l imi t ing values, which de-  

pend on the applied stresses. Only the reverse elast ic  aftereffect  can be determined direct ly  from the test data,  since the in i -  
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Fig. 3. Long-t ime strains in samples of 
Jurassic c lay:  1) e las t ic  af tereffect  at  
t = 24 hr; 2) the same at  t = 29 days; 3) 

viscous flow strain rate.  
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Fig. 4. T ime-dependence  of long- t ime  strains 

in a sample of Jurassic c lay  for o x - o m = 
= 5.3 �9 10 s N/mZ: 1)creep  strain; 2)e las t ic  

aftereffect; 3) viscous flow. 

t i a l  e last ic  af tereffect  is accompanied  by irreversible viscous flow. To study the elast ic  aftereffect ,  a series of samples 

must be tested at  different, but constant loads. If the load is appl ied long enough, a condition is reached where the 

strain grows at a certain steady rate.  This indicates that the in i t ia l  e last ic  aftereffect  has almost a t ta ined its l imi t ing  
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value, and that subsequent increase in creep strain will  be due main ly  to viscous flow of the m a t e r i a l  Following rapid 
removal  of the load the development  of the reverse e las t ic  aftereffect  may  be traced. 

The results of the investigations lead to the conclusion that at any instant the e las t ic  af tereffect  in c lay  soils de-  
pends l inear ly on the stress deviator  components (Fig. 3. ). The Kohlrausch-Bronskii function [4] gives a very good ap-  
proximation of the growth of these strains (Fig. 4. ): 

~ x - - * m  [1 - - e x p ( - -  13 t l -~)] .  (4) 
S x a - -  - -  - 

2G a 

The dimensionless parameter  c~ is a kind of universal constant, its value being almost the same for widely differ-  
ent materials .  Its mean values for c lay so i l s l i e  in the very narrow range 0 .73 -0 .7% whereas for rubber c~ = 0.75 [4], 
and for metals  a ~ 0.70 [5]. 

Viscous flow strains may be determined as the difference between the creep strain and reverse e las t ic  af tereffect  

at the corresponding times. At constant stress, the viscous flow strain tends to increase without l imi t  at  some steady 
rate (Fig. 4. ), and i f  we neglect  the small  in i t ia l  jump, we may assume that these strains are proportional to duration 
of appl ica t ion  of the load: 

~ x f =  s (5) 

Viscous flow may  be observed even at very low stresses, although its rate is then very small  (Fig. 3.) .  The behav- 
ior of the soil changes considerably, however, as the stress grows, and the viscous flow strain rate rapidly increases. The 
following equation of state of a viscous liquid with var iable  viscosity is in quite satisfactory agreement  with the exper-  

imenta l  data 

�9 m 1 
~xf = (=x - -  =m)/2~ = (~x - -  ~m)/2(~-0 + c =j ) - ,  (6) 

here the exponent m is an even integer character iz ing the rate of decrease of the viscosity of the ma te r i a l  with increase 

in stress. For Jurassic and marly  clays the most suitable value is m = 6. 

It may sometimes be more convenient to use an approximation - t h e  equation of a viscoplastic body given in [6] 
(broken line in Fig. 3): 

w h e n ~ i < %  e x f = 0 ,  

when ~ > ~ f  ~ x f : - ~ - ~  1 - -  --am ). 
as / 

Clay soils are complex  media ,  possessing in some degree the properties of a nonlinear viscous liquid. To describe 
the deformation of c lay soils we may use the equations of the Boltzmann-Volterra memory theory, general ized for non- 
l inear  media  by Rabomov and Rozovskii [i, 7]. These general  equations must be transformed, using (1), (2) and (3) and 
the strain rate from (4) and (6). Then 

am % - -  a m 

K 2G0(1 - - a @  
t ~(1 --~)~ 

+ -~< i (t--~)-~exp[--fl(t--~)l-~][%(~)--am(~)ld~+ 
0 

t 

+ -2-1 [ .  [~o + c a~ n (~)l tax (~) - -  am (})] d ~, (7) 
t /  
0 

t 

_ <~v ~(1 - -  ~) 
Y~v--  G o ( l - - a @  + Oa o(t--~)-~exp[--~(t--~)1-~]%v(~)d~ + 

O 
t 

+ j" + d (x, y, z). 
0 

Equations (7) should be used for ac t ive  deformation processes. The same equations will  also be suitable for the 

case of unloading, i f  in each  of them we neglect  the last term on the right, corresponding to irreversible viscous flow. 

NOTATION 

Ox . . . . .  r xy  . . . .  -- normal  and tangent ia l  stresses; s x . . . . .  Yxy . . . .  - re la t ive  l inear  strains and shear strains; a m 
and Sm - mean  stress and strain; oj - stress intensity; c~f-  yield point: K - bulk modulus; F4 - in i t ia l  e las t ic  modulus; 
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Go - ini t ial ,  and G a - long- t ime shear moduli; a and b - instantaneous elastic strain parameters; a and t5 - elastic 
aftereffect parameters; t0, C, c and m - viscous flow parameters; t - time; ~ - variable of integration. Stresses and 

strains are treated as functions of the coordinates (x, y, z) and time. 
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